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Effect of long range order on sheared liquid crystalline materials:
Flow regimes, transitions, and rheological phase diagrams
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A generalized theory that includes short-range elasticity, long-range elasticity, and flow effects is used to
simulate and characterize the shear flow of liquid crystalline materials as a function of the Débeyraimd
Ericksen (Er) numbers in the presence of fixed planar director boundary conditions; the results are also
interpreted as a function of the rafittbetween short-range and long-range elasticity. The results are effectively
summarized into rheological phase diagrams spanned by De and Er, and &sanbyEr, where the stability
region of four distinct flow regimes are indicated. The four regimes for plémar-dimensional orientation
shear flow arg1) the elastic-driven steady stai@®) the composite tumbling-wagging periodic stat®), the
wagging periodic state, an@) the viscous-driven steady state. The coexistence of the four regimes at a
quacritical point is shown to be due to the emergence of a defect structure. The origin, the significant steady
and dynamical features, and the transitions between these regimes are thoroughly characterized and analyzed.
Quantitative and qualitative comparisons between the present complete model predictions and those obtained
from the classical theories of nematodynamicsslie-Ericksen and Doi theorigare presented and the main
physical mechanisms that drive the observed deviations between the predictions of these models are identified.
The presented results fill the previously existing gap between the classical Leslie-Ericksen theory and the Doi
theory, and present a unified description of nematodynamics.

PACS numbgs): 64.70.Md, 47.50t+d, 47.54:+r

[. INTRODUCTION of flow modeling of liquid crystalline materials are available
in the literature[1,6—§.

It is well known that the classical theories for flowing  Previously we presented a generalized flow model for lig-
liquid crystalline polymers predict that sheared nematic lig-uid crystalline materialf9], that encompasses low molecular
uid crystalline(LC) materials have three typical flow regions Weight and polymeric nematics, and takes into account long-
with respect to the Corresponding p|ar[mlo_dimensi0na| and _Short-!‘ange elaStiCity and ﬂOWTinduced effects. The rela-
(2D)] orientation modes: rotationdtumbling), oscillatory  tive intensity of these three forces is captured .by two dimen-
(wagging, and stationaryaligning director orientationgl]; ~ Sionless numbers, the Deborébe) number(ratio of short
the Doi theory[2,3] for polymeric nematic flows also pre- a@nge elasticity to viscous flovand the ErickserEr) num-
dicts log-roling and kayaking out-of-plane orientation ber (ratio of long range elasticity to viscous flpwit was

modes as well as above three in-plane mddésAll these shown [9.] that when Er>0 the mpdel reduced to the Doi
flow regimes correspond to ideal homogeneous orientatiomggz: ggﬁcaeglgsﬁ]rg fgsﬁirgf(é';?f;fenﬁ t?}g%g""g?ﬁff trgf}_
fields, but in real situations liquid crystalline flows have v pp

. . : . dix for detailg. As mentioned above, for plan&D orienta-
bounding surfaces at which the orientation of the molecule?lon) shear ?Iows the classical Doi thgoryé%)redicts three

are strongly affected by surfaces forces and torques. Thg,qes and the LE theory predicts a flow aligning mode and
presence of different and sometimes competing orienting, ,naligning mode. Since the high shear rate steady state
tendencies arising from surface and flow effects aCt'Vateﬁredicted by the Doi theory is a flow aligning mode, it is
long-range(Frank elasticity forces and torques that may equivalent to that predicted by the LE theory, except for the
have a significant impact in the spatially nonhomogeneougoundary layer regions. Thus any theory that encompasses
structural process arising during flow. This type of analysisthe classical theories should, in the appropriate parametric
has been performed using the vector theory of Leslie an@imits of Er and De, predict four ideal flow modése., tum-
Ericksen (LE) [5], that neglects short-range elasticity andbling, wagging, flow aligning, and nonaligningand explain
variations in the scalar order parameters. To complete théhe modifications of the ideal solutions for finite values of Er
current understanding of flowing liquid crystalline materials,and De. The results presented below prove that the present
surfaces and long range elasticity must be included as in th@odel meets these criteria.
LE theory but at the tensor level, thus taking into account all The objective of this paper are as follow4) To give a
the bulk and surfaces effects and at the same time using @mprehensive characterization of all plariab) spatially
more detailed description of liquid crystalline orientation andinhomogeneous orientation modes of sheared nematic liquid
order. Similar considerations apply to defects and disclinaerystalline materials predicted by the generalized model, for
tions, but these are outside the scope of this paper. Reviewglues of the governing Deborah and Ericksen numbers that
include low molecular weight and polymeric liquid crystals
(to facilitate the discussion in some cases we use the Ratio
*Email address: inaf@musich.mcgill.ca of short-range to long-range order as a dimensionless num-
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y V Q= pann+ ppmm-+ g1l )
A — Commonlyn is called the director, and the, (i=n,m,l) are
v 2 related to the uniaxial scalar order parame®eand biaxial

order parameteP, as follows[10]:

2 1 1
=35  wm=3(P=S), w=-3(P+S. @

For planar orientation modekjs always collinear with the

vorticity axis z. The evolution for the second order ten€pr

in a flowing liquid crystalline materialsee Ref[9] for de-
T = X tails) is given by the following dimensionless nonlinear
coupled partial differential equations:

FIG. 1. Definitions of coordinate system and flow geometry.

The liquid crystal sample is placed between two large flat parallelﬂ _ i _ 6 1— B) Q
plates, and is sheared by moving the upper plate with a constanGt* De (1—3/2Q:Q)2 3
velocity V. At the bounding surfaces the tensor order parameter is a

constant equal to its equilibrium value, and with the director paral- . U[Q- Q- E(Q'Q)é n U(Q'Q)Q} )
lel along the flow direction. The gap separatiorHis 3+ '

ber instead of the Deborah numpegR) To characterize and " i(V2Q+ Lo* V(V-Q)

explain the driving mechanisms involved in the transitions Er 2

between the various shear flow orientation regimes, and their 5

dependence on the governing dimensionless nuitibeand oVT_ 2 )

Er, orR and EJ. (3) To quantify and explain the deviations FIVV-QI 3tr[V(V Q1o
of the predictions of the present work from the classical so-

lutions obtained using the LE theory and the Doi theory with +5
the closure approximatiori4) To summarize the universal

features of the in-plane shear rheology in terms of rheologi-

S
+ 3 A

2
A*~Q+Q-A*—§(A*:Q)6]

cal phase diagrams span by the Deborah number and the —E,B{(A*:Q)Q+A*-Q~Q+Q~A*«Q+Q~Q-A*
Ericksen number, and by the ratio of short- to long-range 2
elasticity and the Ericksen number. —[(A*-Q):Q]5) ()

The organization of this paper is a follows. Section I

presents the scaled governing equations, dimensionless NUjere G/Gt is the corotational derivative,,* is a dimen-

bers, parameters, initial and boundary conditions, and thgjgnless Landau coefficiefitl], B is a shape factdi10,17,

numerical methods used to solve the governing equations fqlj is a dimensionless nematic potential intensiy, is a rate

a given shear flow. Section Il presents and discusses thg sirain tensor, and where a superposed star denotes a di-

results given in terms of tensor order parameter profiles, digensjonless quantity. The original variables are nondimen-

rector orientation angle profiles, and rheological phase diagjgnalized using the plate separation distahethe upper

grams. Section IV gives the main conclusions of this work. plate velocityV, and the Landau coefficiett, [9] as char-
acteristic values for distance, velocity, and energy per unit

Il. GOVERNING EQUATIONS AND NUMERICAL length, respectively. De and Er are the Deborah and Ericksen
METHODS numbers defined as
The rectilinear simple shear flow geometry studied in this Vv
paper is shown in Fig. 1, whett is the plate separation and De= o R’ (5a)

V is the constant and given velocity of the moving upper

plate; the bottom plate is fixed and the upper plate moves in "y
the x direction. The shear plane is tlxey plane, andz is the Er= 7
vorticity axis. To characterize all the possible planar orien- Ly

tation modes we use the following tensor order parameter: ) ) o o )
whereD* is a rotational diffusivity coefficient, and is a

(5b)

Qu Qu O viscosity. The first group in the right side of E@) (i.e., the
o 5 terms multiplied by 1/Derepresent the nematic short-range
Q=J uu— 3 fdu=| Qxy Qyy 0 |, D order, the secondi.e., the terms multiplied by 1/Erthe
0 0 Qgzz long-range ordefFrank elasticity, and the last the viscous

flow effect. Thus, the two dimensionless numbers give the
where u is a unit vector along a rodlike moleculé,is a ratio of the three processése., long-range, short-range, and
orientation probability density function, anitis the unit ten-  viscous flow, with De being the ratio of the viscous to short-
sor. In terms of three eigenvalugg.,,,um,u} and three range elastic effect, and Er the ratio of viscous effect to
eigenvectorgn,m,l}, the orientation tensor is written §%0] long-range elastic effect. However, since both Er and De
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include the shear rate/(H), both numbers are changed by 1
changing the operating conditiorishear ratg In some in- Seq:EJr § ; /1— i n=|0 ®)
stances it is preferable to discuss and analyze the results 4 4 U’ 0 |

using a dimensionless number independent of the shear rate.
A convenient dimensionless number is the ratio of Er to DeThe surface directon is always aligned along the direc-

tion and the surface scalar order parameters is equal to the
Er »H2D* equilibrium valueS®%, and thus prior to the imposition of
“De” L (50 flow the system is spatially homogeneous and at the lowest
. energy state. The boundary conditions used here can be al-
tered by treating the surface as viscoelastic, as done by Rey
which gives the relative magnitude of short-range to long{13]. To facilitate the analysis and discussions of the compu-
range elastic effects, and also represents the ratio of the timational results we use 2D plots as well as scientific visual-
scales for change in the eigenvaluesfo the time scale izations of the tensor order parameter profiles as a function
for changes in the eigenvectors Qf Another interpretation of dimensionless time. The tensor order parameter is repre-
of Ris that it is the square of the ratio of the system lengthsented by an ellipse, whose majoninor) axis represents
scale (H) and the mesoscopic length scalé [¢é n(m) and whose axes lengths are proportionalutp and

R

=(L,/D* )*2]. By introducingR, Eq. (4) becomes Um, respectively.
GQ 6 U Ill. RESULTS AND DISCUSSIONS
Er===R| — =—=m602 (1——Q :
Gt (1-3/2Q:Q) 3 A. Four flow regimes

After an extensive computational investigation of Egs.
+U(Q3Q)Q]) (4), (7), and (8), it has been found that the present model
predicts four distinct flow regimes as the dimensionless val-
5 L, T uesR and Er(or De and Ey are varied through the interval
HVIQ+ o V(V-Q+[V(V-Q)] [0, ), in agreement with the restrictions imposed by the
classical solutions mentioned in the introduction. The four
flow regimes within the planar orientation restriction &ag
elastic-driven steady stat€S9, (b) composite tumbling-
wagging periodic statdTWS), (c) wagging periodic state
N " .. (WS), (d) viscous-driven steady stat¥/SS). The existence
AT-QTQ AT - §(A Q) 5] of four flow regimes can be qualitatively explained by con-
sidering the effects of the governing dimensionless numbers
R and Er. If Er is sufficiently small, the ESS steady state
always prevails for anyR because long-range elasticity
dominates over flow effects. R is sufficiently small, the
_ 6) eigenvalues of) are strongly affected by moderately strong
flows, an effect that quenches the rotational tendencies of
shear, and eventually leads at sufficiently large Er to flow-

The chosen values for the physical parameters usealignment or VSS mode. IR is sufficiently large the eigen-
throughout this work are as follows: shape fac®w0.9 values ofQ are relatively insensitive to the flow strength,

; oy ; o h that increases in Er increases the rotational effects of
[12], nematic potential intensity =6, Landau coefficient suc c e
L3 = 1/2 (this corresponds to the Frank elasticity coefficientsthe flow, giving rise to th? emergence of _the tumbl(_ﬁ'gVS)
K,=Ks=3K,, in the case of a uniaxial nematicquation and wgggmg(WS) periodic modes, and_ finally at high Er to
1773 21~ flow-alignment(VSS). Thus at lowerR increasing Er pro-
(4) is solved using a fourth order Runge-Kutta method for uces a transition between two steadv states-E€SS. On
time integration and a second order finite difference metho : : -ady : ]
L o . - the other hand at highdR, increasing Er produces the fol-
for the spatial discretization. Also, the computational condi-_~. . . :
tions are: Runge-Kutta time step widtt* =102, and spa- lowing cascade: ESSTWS—WS—VSS. In this section we
tial discrétization WidthAV* = 10-2. The initial a’nd bound- present, characterize, and discuss these four distinct shear
arv conditions used thro)Llj hout a;e flow regimes, while the transitions are considered in Sec.
y g IIIC. In what follows we show the necessary and sufficient
results that meet the objective of this pagsee the Intro-
Q(t=0,0sy*<1)=Q(t>0,y*=0) duction.
O(t>0Vv* =1 (a) Elastic-driven steady state (ESS)he elastic-driven
=Q( y' =1 steady state arises when the stabilizing effect of the long-
S range order overcomes the rotating effects due to the vortic-
= Seq( NgNg— 5), (7) ity of the flow and arises for sufficiently small Er and arbi-
trary R. This low Er regime was discussed at length in Ref.
[9], and here we summarize the most important features.
where the uniaxial order parameter at equilibri@¥, and Figure 2 shows the director angk at the center line
directorng at the bounding surfaces are given by (y*=0.5) as a function of dimenstionless timg, for R

1
—U[Q-Q—g(Q:Qw

*

2 A
§,3

—%tr[V(V-Q)]&]JrEr

B

1
~ 5 Bl(A*:QQ+A*-Q-Q+Q-A*-Q

+Q-Q-A*—[(A*-Q):Q] 5}
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FIG. 2. Director angle at the center liney* =0.5) as a func- 200
tion of Er for R=250 (solid line) and 2500(dotted ling. The pro-
files (Er=206 for R=250 and Ex=629 for R=2500 end at the
ESS-TWS transition. The solution multiplicity is similar to that -900
predicted by LE theory.

g (deg)

-600

-1200 - ! .
0 20 40 60 80 100

=100 and E+ 10 (De=0.1). The shown figure is typical (b t
and representative of the ESS regime. The director angle TP

. FIG. 4. (a) Scientific visualization of the tensor order parameter
decreases monotomca}ly o a steady state. In the gbsence ecfripsoid profiles as a function of dimensionless titfie (b) direc-
long range order the director would tumble according to thei0

Doi th ith th | imat . for th r orientation anglé as a function of dimensionless tini& at the
ol theory wi € closure approximation since for e ..., ¢*=0.5). The parametric conditions aR=100 and Er

present case the tu_mbling-wagging ”a”SiFiP”S occurs at De 2000 (De=20), and is typical and representative of the TWS
~25 and the wagging-steady state transition occurs at Dgygime. In the two surface layers found between the bounding sur-

~58. However, in a spatially inhomogeneous system thgaces and the abnormal state, the director oscillates in time, and in
long-range elasticity is able to frustrate the director periodighe bulk region the director rotates clockwise.

motion. In the ESS regime Frank elasticity dominates over
the entire flow geometry and this corresponds to a director, . B .
profile with a nonvanishing first derivative6/dy* =0 (a R=2500 but with Ef =629. As Er increases from zero, the

typical profile discussed in detail later is shown by the dottedfiréctor — exhibits discontinuous jumps at =£r5 for
line in Fig. 6. Figure 3 shows the director angteat the ~R=250, and at Er75 and 541 forR=2500. As Er de-

center line ¢* =0.5) as a function of Er, foR=250 (solid ~ Creases from 700 the discontinuous jumps occurs at2@r
line) and 2500(dotted ling. The profiles exist up to Er  for R=250, and at E+27 and 112 foilR=2500. The solu-
=206 for R=250, and Ef =629 for R= 2500, respectively, tion muItlpI|C|ty displayed by the present quel is S|mllgr to
since the ESS-TWS transition occurs at these criticdl Er that predicted by the LE theofyl4], with the important dif-
(The transition is discussed in detail in Sec. I)l CThis ference that the ESS solutions exist up to a certain critical

means that foR= 250, if Er<Er* <206, ESS is the stable R-dependent value of the Ericksen number @&). As R
solution to Eq.(4), and if Er>Er* =206 ESS does not exist increases the range of existence of ESS increases and as

and TWS is the stable solution; identical statements apply t&— %, the ESS mode exist for all Er, in agreement with
the fact that the present model converges to the LE model as

R— + o0,
0 —. The main features of the ESS regime é&tgthe orienta-
tion field reaches a steady sta(g) the transient process to
100+ its steady state is monotonic and nonoscillato(®), the
\\_ steady states arises due to the long-range elastidjtyinder

"""""""""""""" the same conditions a homogeneous system displays the

g (deg)

-200 tumbling state(or wagging state if De is sufficiently large
. (5) higher values oR and lower values of Er promote the
-300 R appearance of this staté¢g) the difference between the
""""""""""""""""""""""" present predictions and the LE solutions for tumbling nemat-
-400 ics is that in the present case the steady state solutions dis-

! i 1 1 1 1

appear at & dependent critical Er, while they always exists

for the LE model, and7) in the ESS regime there is no

orientation boundary layer behavior because there is no flow
FIG. 3. Director orientation anglé as a function of dimension- alignment in the bulk.

less timet* at the center liney* =0.5), for Er=10 andR=100. (b) Composite tumbling-wagging periodic state (TWS)

The shown figure is typical and representative of the ESS regimelhe TWS time periodic regime exist at sufficiently larBe

The director dynamics is overdamped. and Er. Figure @) shows a computed scientific visualization

0 100 200 300 400 500 600 700
Er
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of the tensor order parameter ellipsoid profiles as a function
of dimensionless time*, for R=100 and E+2000 (De
=20). The shown figure is typical and representative of the
TWS regime. The figure shows that in the core region
(aroundy* ~0.5) the ellipsoids rotat€tumbling mode as >
function of time and that in the two layers close to the two
bounding surfacegy* =0, y*=1) the ellipsoids oscillate
(wagging modgwith a space dependent amplitude; the am-
plitude decreases to zero at the bounding surfaces and in
creases to a maximum value at the boundary between thes
tumbling and wagging regimes. The term composite in the
subtitle of this section refers to the fact that two different 20
(i.e., rotational and oscillatojytime dependent modes coex-
ist spatially, with the tumbling layer occupying the center
region (y* =0.5) and the two wagging layers adjacent to the
bounding surfacesy¢ =0,1). The thickness of the two wag-
ging layers decrease with increasing Er.
Figure 4b) shows the director anglé at the centerline 20
(y*=0.5) as a function of dimensionless timé&, for
R=100 and E+ 2000 (De=2). The shown periodic evolu- -30
tion is typical and representative of this regime. The director ) -
in the bulk region rotates continuously with time, and dis-
plays the classical steplike time evolutiph]. As shown in FIG. 5. (a) Scientific visualization of the tensor order parameter
Fig. 3@ the director near the bounding surfaces oscillatellipsoid profiles as a function of dimensionless tittie (b) direc-
(wagging layers To smoothly and continuously connect the tor orientation angle as a function of dimensionless tinte at the
director periodic rotation in the bulk region with the oscilla- center *=0.5). The parametric conditions aR=100 and Er
tory motion in the two wagging layers, the ellipsoids peri- =3000 (De=30), and is typical and representative of the WS re-
odically becomes circlefs] at the two boundaries between gime. The ellipsoids oscillates periodically, with an amplitude that
the core tumbling region and the two wagging surface Iayer§§ a maximum at the centerline and zero at the boundary surfaces.
When the ellipsoid becomes a circle, the and u,, eigen-
values ofQ are equal, a configuration known as the abnor-(b)]. The figure shows the periodic oscillations of the ellip-
mal nematic stat¢15]. The periodic emergence of the two soids, with an amplitude that is a maximum at the centerline
abnormal nematic states creates a director resetting mechand zero at the bounding surfaces, where a fixed orientation
nism that allows the presence of a core tumbling layer in thés imposed through the boundary conditions. Figufe)5
presence of fixed boundary orientation in a sheared nematighows the director anglé at the centerliney* =0.5) as a
sample without creation of persistent singularities or defectsfunction of dimensionless time*, for R=100 and Er
The incompatibility of the strong anchoring condition with =3000 (De=30), and represents the typical behavior in this
the bulk tumbling behavior was foreseen by Marrucdd],  flow regime. The flow regime is periodic with the director
using the vector type equation. always close to the flow direction. The scalar order param-
When Er+ due to absence of long-range elasticity eters changes seentat~52 in Fig. §a) are due to the fact
the TWS mode becomes identical to the tumbling mode prethat at this time the difference between the bulk director
dicted by the Doi theory with the closure approximatiand  orientation and the flow direction is a maximum, as seen in
B=0.9), but at finite Er the TWS mode is drastically differ- Fig. 5(b) att* ~52 (see Farhoudi and R¢{7] for detaily. A
ent for Doi’s tumbling mode at the same De values, adgirect comparison between Figs. 4 and 5 reveals the sources
shown by Fig. 4a). The main features of the composite of the major differences between the TWS and WS. In the
tumbling-wagging state arel) the director dynamics in the TWS the difference between the director angle in the bulk
bulk region is rotational, and oscillatory in the two surfaceregion and at the boundary surfaces increases continuously
layers,(2) at the two boundaries between these three regionwith time. On the other hand, in the WS the director oscil-
the abnormal nematic state emerges periodicéBythe ten-  lates with boundedless thans radiang amplitude and thus
sor order parameteQ corresponding to the abnormal the difference between the bulk director angle and the sur-
nematic state has two equal eigenvalugs= u,) and the face director angle is always finite, and no abnormal nematic
director n is undefined. This creates a director resettingemerges because no resetting mechanism is needed to make

10

6 (deg)

mechanism. the bulk dynamics compatible with the fixed surface orienta-
(c) Wagging periodic state (WSJhe WS periodic regime tion.
exists at sufficiently largeR and Er. Figure &) shows a The WS regime becomes identical to that predicted by the

computed scientific visualization of the tensor order paramboi theory with the closure approximatiotand g=0.9)

eter profiles as a function of dimensionless titie for R when Er— +. For finite Er the WS is spatially inhomoge-
=100 and E+3000 (De=30). The figure is typical and neous while Doi's wagging regime is homogeneous. The
representative of this regime. If Er is sufficiently large a newmain features of the WS ai@) the director dynamics over
wagging periodic regime emerges and replaces the tumblinthe entire flow geometry is periodic oscillatory, with an am-
core region found in this regime for lower Er numbgsse  plitude that decreases from a maximum at the centerline to
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0 is activated in spatially inhomogeneous director fields. On
the other hand, VSS is driven by the viscous flow orienting

. effect and is independent of the long range elasticity. The

2 flow aligning angle typical of the VSS regime and known as
§ the Leslie angle in the LE theory is for this case approxi-
T 3 mately —4°.

D

In the context of the classical theories the director profile

dl in the ESS regime is similar to that predicted by the LE
st theory for non-aligning nematics, while the director profile in
the VSS regime is similar to that predicted by the LE theory
6 : : ' : for aligning nematics(note that the classical uniaxial LE
0 20 4 60 80 100 theory predicts positive flow-aligning angjef\s Er— +
t* due to the absence of long range elasticity the VSS regime is

: i . . : : identical to that predicted by Doi theory with the closure
FIG. 6. Director orientation angl@ as a function of dimension- . . . .
less timet* at the center ¥* =0.5), for E=10000 andR=100. gpprOX|mat|on(anQBfO.9). IntrOdl,Jcmg Iong—range ela_St'C'
The shown figure is typical and representative of the VSS regimelly introduces deviations from Doi theory, with the orienta-
The director dynamics is underdamped. tion boundary layers being the most important. The main
features of the VSS regime af®) the steady director profile
displays a typical boundary layer behavior, where the bulk is
dominated by the flow-orienting torque that align the director
close to the flow direction(2) the transients are under-
damped,(3) the driving force to achieve steady state is the
ig‘iscous flow, and is completely different from the ESS
which is driven by long-range elastic torques.

zero at the bounding surface®) for a givenR the period
decreases with increasing Er.

(d) Viscous-driven steady state (VSA) sufficiently large
Er and appropriateR (see Sec. IlIB the flow regime is
steady. The steady state is driven by the viscous flow and
different to the ESS in many significant aspects.

Figure 6 shows the director orientation anglat the cen- ) )
terline (y* =0.5) as a function of dimensionless tirtfg, for B. Rheological phase diagram
R=100 and E+10000 (De=100). The shown figure is The rheological phase diagram is a two-dimensional plot
typical and characteristic of this regime. The evolution in thethat displays all the stable flow regimes as a function of the
VSS regime is underdamped in contrast to being overgoverning dimensionless numbeRsand Er(or De and E).
damped in the ESS regimes. To highlight the significant dif-In this study we have performed a comprehensive solution
ferences between these two steady state regifi8S and characterization in the two parameter planes, and below
VSY), Fig. 7 shows the steady state director profikg™*) show results using the following symbols to denote the stable
for ESS(solid line, R=100, E=10, and De=0.1) and for  solutions to Eqs(4), (7), and(8) for the given values oR
VSS (dotted line,R=100, E=10000, and De0.1]). The and Er(or De and Ex. squares for ESS, diamonds for VSS,
director profile for ESS is parabolic, and for VSS displaystriangles for WS, and open circles for TWS. Due to the com-
the classical boundary layer behavior, with rapid changeplexity of the nonlinear system of coupled partial differential
near the bounding surfaces and a flat profile in the core. Thequations no method to compute the exact boundary between
shape of the profiles is dictated by the nature of the stabilizthe different flow regimes was found, but the large number
ing mechanism that promotes the steady state. For ESS tli# computed solutions gives a sufficiently accurate location
steady states arises due to the long range elasticity effect thaf the transition lines in the parametric plane.

Figure 8 shows the rheological phase diagram containing

0 _ the stable regions of the four ESS, TWS, WS, and VSS flow
regimes as a function d® and Er. The closed circle denotes
1 a quacritical point from which the four transition linése.,
T line separating two regimg®manate. Since as mentioned
2 above no lines were computed, they are not explicitly shown

but are clearly apparent in the figure. The location of the
quacritical point is R,Er)=~(3.8,60), and at this point the

g (deg)

3 four flow regimes coexistsee discussion in Sec. II)CFor

al R>3.8 the system displays the four flow regimes as Er in-
creases. However foR<3.8 only steady state€ESS and

5 VSY are found. The TWS and WS regions shrink as the

0.0 02 04 0.6 0.8 1.0 quacritical point is approached and are extinguished at that
point. The reason why the TWS and WS region disappear as
R and Er decrease towards the quacritical point is that both
FIG. 7. Steady state director profilé¢y*) for ESS(solid line, ~numbers scale with the inverse of the long-range elasticity
R=100, Er=10, and De=0.1) and for VSS(dotted line,R=100,  Which tends to damp any periodic behavior. The ESS region
Er=10000, and De 0.1). The director profile for ESS is parabolic, Spreads to higher Er &R increases. For higiik the scalar
and for VSS displays boundary layer behavior with rapid change©rder parametdiS, see Eq(3)] remains relatively unaffected
near the bounding surfaces and a flat profile in the core. by the flow and close to its equilibrium value, and a rela-

y*
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of the Doi model with the closure approximatidgand 8
103 F 0O 000 =0.9), while the horizontal axis represent the predictions of
the LE model for a nonaligning nematj¢7]. In Sec. | we
o woee showed that the present model converges to the Doi model
102 |0 O obobo o O amo when Er—0 (spatially homogeneous systgmnwvhere no ESS
@ . - Dd% o 2ol e exists, and the tumbling-wagging and wagging-aligning tran-
o 0% sitions occurs at De25 and 58, respectively, in agreement
10" 0 O o0nea0 o °© with Fig. 8. For De-0, the system has no periodic states, in
o o o ooo ° agreement with the well-known LE solutions. Increasing
1/Er the periodic TWS and WS regions become smaller and
10° [ 7 T Mo A finally disappear at 1/E¢0.016. In Fig. 8 the strength of the
10° 10" 102 102 10* long-range order increases with increasing 1/Er, so that the
right-hand side of Fig. 9 corresponds to the lower left side of
Er Fig. 8.
FIG. 8. Rheological phase diagram as a functiorRadnd Er.
The figure shows the stable regions of the four ES§ TWS (O), C. Flow regimes transitions

WS (A), and VSS(¢) flow regimes.(®) denotes a quacritical
point from which the four transition line§.e., line separating two
regimes emanate.

In this section we characterize and discuss the transitions
between the four flow regimes, especially the ESS-TWS
transition, and the quacritical point. As shown in the rheo-
. . . . . ._logical phase diagramdigs. 8 and 9 there are four kinds
tively higher Er is needed to activate the rotational dynamicy¢ transition lines in the parametric plane corresponding to
of the tumbling state though the emergence of the abnorm%‘) ESS-TWS,(b) TWS-WS, (c) WS-VSS, andd) ESS-VSS
nematic state. At sufficiently low, and sufficiently high Er  y5nitions. As mentioned above, while we could not find the
the decrease of the scalar order parameFer _producgs the EMELact location of transition lines due to lack of a numerical
gence of the VSS, knqwn as the flow aligning regime in thetechnique, they do converge at a poitiere denoted the
LE theory[5]. As mentioned above the mechanism that pro-q, acritical point as in equilibrium phase transitidas)), as
duces the emergence of VSS through a decreassaofl an unambiguously shown in Figs. 8 and 9
increase of the reactive order param¢@grto a value greater ' '

) . : The bifurcation analysis of a similar model as used here in
thaﬂ L IS eXplamEd. n Re(.l?]. The reason wh_y the VSS homogeneous system has been performed by Farhoudi and
region widens with increasing and Er is that aR increases

; g X : Rey[17]. They have established the mechanism of transition
higher flow strengtithigher Ej is required to produce the poqyeen tumbling and wagging modes and the bifurcation

scalar order parameter changes that produce the flow aligiy o\yed in the transition between the wagging and aligning
ing regime. In terms of the classical theories, the L'E limit IS yrientation modes. It is showfL7] that the tumbling orbit
approached wheR— + where the only solution is ESS, gpjits into two limit cycles at the TWS-WS transition point,
and the Doi limit is approached when-Ert e, where TS,  gn4 then at higher De a Hopf bifurcation sets in at WS-VSS
WS, and VSS are the stable solutions. , transition point. To analyze the transitions in the present
Figure 9 shows the rheological phase diagram in terms of,qe| we use the following fact: since the main features of
De and 1/Er; the symbol notation corresponds to that of Fighe system depend on the bulk region behavior where the
8. The quacritical point is located at De £(15.8,60). Itis  |ong range elasticity has comparatively less effect than close
useful to note that the vertical axis represent the predictiong, ihe surfaces using the results of H&f7] to analyze mode
transitions in the inhomogeneous system studied here is ap-
103 propriate and accurate, unless the transition includes the ESS

mode. The four transitions and the qua-critical point are ana-
lyzed in what follows.
102 © ¢ o0 0 (a) ESS-TWS transitiorThe time period of the orientation
IO ZAA;O g dynamics of the TWS mode diverges at the transition point.
© L OO O% O% oG In Ref.[9] we characterized the director rotation time period
Q 10 o in the TWS regime, and established the divergence of the
0o® 0gh O time period at this transition line. The orientation phenomena
100 F 6 o oabs o o at the ESS-TWS transition is deduced from the behaviors of
o 0O o Q in both the ESS and TWS mode in the immediate vicinity
e = of the transition. Figure 1@ shows the director anglé at
10" S = the center liney* =0.5) as a function of dimensionless time
107 103 102 10™ 10° t*, for R=100 and E+ 85 (De=0.85), for the TWS mode
1/Er very close to the ESS-TWS transition line. The angle profile

shows a novel director rotation behavior where the director
FIG. 9. Rheological phase diagram as a function of De and 1/Efias a two-step-like change in a single period. The corre-
The figure contains the stable regions of the four ES$ TWS  sponding computed scientific visualization of the tensor or-
(0), WS (A), and VSS(<) flow regimes, and a quacritical point der parameter profiles as a function of dimensionless time is
(@). See text. shown in Fig. 10b). From these figures it can be seen that



8148 TOMOHIRO TSUJI AND ALEJANDRO D. REY PRE 62

100 wise to counterclockwise, so that the sign of the long-range
0 elasticity contribution also changes from positive to nega-
tive, explaining why in the TWS mode rotation prevails in
-100/ the bulk of the sample. The short step in the center line
S 200f director evolution fades away when moving away from the
g 300 | transition line(i.e., changing Er and Dgesince the elastic
and viscous effects become far from being balanced. As Er
-00f decrease the abnormal nematic states in the TW mode move
-500 | towards the center lin€Ref. [9] for detailg. Thus at the
600 : ‘ ( ‘ ESS-TWS transition the abnormal states also move towards
0 20 40 60 80 100 the center line as Er decreases, and at the quacritical point
(@) t* they merge into one.

The main features of the ESS-TWS transition line @ne
the transition line connects the steady state of ESS and the
periodic state of TWS(2) there are two abnormal nematic
points whose position move towards the centerling (
=0.5) as the quacritical point is approaché8) the time
period for director rotations diverges at this transition line,
(4) the line separates regions of two different director behav-
iors[i.e., winding up of the director spatial profi(&SS and
director time rotatiof TWS)].

(b) TWS-WS transitian As mentioned above, the
TWS-WS transition is similar to that in the spatially homo-
geneous systems predicted by Doi theory with the closure
approximation. The transition between tumbling and wag-
ging states in a spatially homogeneous system is effected
through the emergence of the abnormal nematic $thte
Close to the tumbling-wagging transition the scalar order
parameter becomes remarkably small, and at the exact tran-
sition point the abnormal nematic state emerges temporally
[17]. The periodic emergence of the abnormal nematic state
(b) r is due to the viscous flow effect, since there is no long range
. e elasticity effect in spatially homogeneous systems. At the
FIG. 10. (3 Director angleg at the centerliney(’ =0.5) as a TWS-WS transition line of the spatially inhomogeneous sys-

function of dimensionless timg , (b) scientific visualization of the ¢ this ab | tic state t I in th
tensor order parameter ellipsoid profiles as a function of dimension-c'"» tIS abnormai nématic state temporally appears in the

less timet*, for R=100 and E+ 85 (De=0.85). The figures show entire”bulk region. While the bglk region experiences t_he
the TWS mode very close to the ESS-TWS transition liagy* transition from tumbling to wagging state, the_re IS no major
=0.51*) shows a novel director rotation behavior where the direc-Change in the boundary layer region, in which the system
tor has a two-step-like change in a single period. The small step i§hOWs the wagging behavior in both TWS and WS regimes.
strongly correlated to the emergence of the abnormal nematic statll. should be mentioned that this transition line separates two
periodic flow regimes, and hence the transition also appears
the director rotation behavior is strongly related to the ap-as periodic. The main features of the TWS-WS transition
pearance of the abnormal nematic state. For example, tHme are (1) the transition line separates the periodic TWS
short step at* ~61.2 in Fig. 10a) reflects the emergence of mode and the periodic WS modg) the abnormal nematic
the two abnormal states close to the bounding surfaces istate which is driven by the viscous flow effect temporally
Fig. 1ab). In the usual tumbling case, the director’'s angularfills the bulk region, while no major change appears in the
velocity accelerates when the director is perpendicular to thewo boundary layer region$3) the bulk core region contain-
flow direction, and decelerates when the director is close ting the periodically emerging abnormal nematic state shrinks
the flow direction. However, near the ESS-TWS transitionas the quacritical point is approached on the DéeER-Er)
the angular velocity decelerates and accelerates just befoparametric plane4) this is the only transition at which the
and after the appearance of the abnormal nematic state. Giystem shows periodic behavior.
the ESS side of the transition, the orientation field requires (c) WS-VSS transitionThe WS-VSS transition also has
infinite time to reach steady state and the steady state profitkae same nature as the wagging-aligning transition in the
includes two states which are almost abnormal nematispatially homogeneous systefh7]. The amplitude of the
states. On the TWS side near the transition the abnormalagging oscillation becomes zero at this transition line. In
nematic states appear before the system reaches the steaudlyer words, the zero limit of the wagging oscillation ampli-
state. Before the appearance of the abnormal nematic stateide is the flow aligning state. Both the bulk and boundary
the viscous flow effect is almost balanced by the long-rangdayer regions experience the transition from the oscillatory to
elastic contribution, and thus the torque on the director bethe stationary state. The main features of the WS-VSS tran-
comes low. The appearance of the abnormal nematic changsgion are (1) the transition line separates the periodic WS
the spatial arrangement of the director rotation from clock-mode from the steady VSS mode) the bulk core region

<~ ==——F7
NN N~ ——— - £
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shrinks and the time period diverges as the quacritical point
is approached on the De-Eor R-Er) parametric plane.

(d) ESS-VSS transitiohe ESS-VSS transition line, cor-
responds to a smooth continuous transition between two dif-
ferent steady state modes. Since the transition is continuous,
both modes are equivalent and identical at the transition line.
As discussed in Sec. Il A the major difference between ESS
and VSS is in the mechanism to achieve a steady state. In
VSS, there is a bulk region where the viscous flow effect is
dominant and the flow-aligning dynamics of the Doi theory
is retained, and two orientation boundary layers arise to al-

low for the continuous changes between the flow-aligning 0 200 400 600 800 1000
director angle and the fixed director surface orientation. On @ Er

the other hand, in the ESS mode there is no boundary layer 1.05

behavior because flow alignment does not exist in this mode.

To characterize this transition more clearly, we use the reac-

tive parametem\, which present the ratio of the strain to K R o,

vorticity effects on the directof6]. For the present model, 1.00 =

the parametek written in terms of the scalar order param-

etersSandP is given by =

0.95
1
Bl 4+2S+2P—-S*— §F>2
A= (9) I I | L
— ' 0.90
65-2P 0 200 400 600 800 1000
(b) Er

where, forh <1 the homogeneous system adopts a nonalign- 20

ing flow mode, and forn=1 the homogeneous system

adopts the flow-aligning modgl9]. In the present spatially
nonhomogeneous modgl=\(R,Er,y*) and since orienta-

tion and order are coupled, it is found thats a function of 1.5
the director anglé.

Figure 11a) shows the centerline director orientation
6(y* =0.5) as a function of Er, foR= 3 (solid line), 1 (dot- 1.0 " e —
ted ling, and 0.1(dashed ling The director orientation dis-
plays a single undershoot followed by a monotonic increase
and finally saturation to values closer to zerdRasicreases. ‘
The minimum is an increasing function Bf and thus higher ~ 20 15 10 5 0
R produces deeper wells, allowing the director to sample
larger negative angles. Atdependent critical value Er
the director at the centerline achieves a minimum, signaling FIG. 11. (a) Director angleg at the centerliney* =0.5) and(b)
an exchange in flow mechanisms. At<EEr*, increasing Er reactive parametex at the center liney* =0.5) as a function of
produces stronger deviations from the flow direction, denot&r, for R=3 (solid line), 1 (dotted ling, and 0.1(dashed ling (c)
ing the increasing effects of vorticity with increasing Er. On reactive parameter at the center ling &0.5) as a function of at
the other hand when BfEr*, as Er increases the director the center line ¥* =0.5), forR=3 (solid line), 1 (dotted ling, 0.1
aligns progressively close to the flow direction, denoting the(dashed ling and for the spatially homogeneous cégdeuble dot-
increasing aligning tendency due to strain. Thus we havéed line, respectively. For the spatially homogeneous case
shown that the left side of the well corresponds to ESS and 1/cos 2.
the right side to VSS. Next we show that the analysis is
indeed corroborated by the corresponding behavior of the
reactive parametex at the centerliney* =0.5) as a function center line attains its minimum the reactive parameter attains
of Er for the choserR values. Figure 1(b) shows the reac- its maximum which is greater than 1, thus explaining the
tive parametei at the center liney(* =0.5) the as a func- ESS-VSS transition, simply as a change of behavior at a
tion of the Ericksen number Er, fd® values corresponding critical Er=Er*. For spatially nonhomogeneous system, the
to the previous figure. The figure shows that the reactivaeactive parametex is a function of position and thus the
parameter exhibits overshoot behavior followed by a monoaligning-nonaligning transition condition for spatially homo-
tonic decrease and final saturation to values increasinglgeneous systemg,=1, is not exactly obeyed. Figure (£}
greater than one for increasiiy The peaks of the overshoot shown the reactive parameterat the center liney* =0.5)
increase with increasin® and occur at smaller Er values. as a function of the director center line anglg/* =0.5), for
The \ overshoots are directly correlated to the undershoot®= 3 (solid line), 1 (dotted ling, 0.1 (dashed ling and for
of §, shown above. Thus very close to*Ewhere 6 at the the spatially homogeneous flow-aligning stédeuble dotted

©) 0 (deg)
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= TABLE |. Characterization of flow-mode transitions. ESS:
elastic-driven steady state, TWS: tumbling-wagging composite
Elastic-Driven Tumbling-Wagging state, WS: wagging state, and VSS: viscous-driven steady state.
Steady State Periodic State Hard: discontinuous change; Soft: continuous change.
I | ESS-TWS TWSWS WSVSS ESS-VSS
§‘ ?1 i § § Cg Amplitude of Hard Hard Soft Soft
N 3 S 35! dl.rector Qynamlcs
1S N —Q O O Time period of Soft Soft Hard Soft
< ) = Q O . .
= = _— O O director dynamics
== T ———— Boundary layer Hard Soft Soft Soft
e~ thickness

Viscous-Driven
Steady State

ojiio

Wagging ‘
Periodic State; . . . L
the tensor ellipsoid profiles between the two indicated flow

= regimes. Recall that a circle denotes the abnormal nematic
states. For example the transition between the TWS and WS
FIG. 12. Schematic of the tensor parameter profiles at four tranis effected through the periodic emergence of an abnormal
sitions (ESS-TWS, TWS-WS, WS-VSS, and VSS-BS8 well as  nematic bulk layer. The other remaining schematics follow
at the quacritical pointat the center The ellipsoids show the ten- directly from the previous discussions. At the center of the
sor order parameter states and the role of the abnormal nematfrgure the schematic of the tensor order parameter at the
states at the transitions and at the quacritical point. See text. quacritical state is shown to be fully compatible with the
space and time dependent structural characteristics of the
line). The lines are obtained by increasing Er from zerojtensor order parameter profiles at all the four flow transi-
increasing Er from zero corresponds to left motion along thejons. Thus the figure provides a synthesis and a consistent
curves towards the turning point and subsequently to th@nified vision of spatially nonhomogeneous planar nemato-
rlght The thin solid line represents the critica& 1 transi- rheo|ogy in the presence of short- and |ong_range e|asticity_
tion value for homogeneous systems. The spatially homoge- Finally, the four transition states are classified in Table I,
neous flow-aligning state profile is given by the Leslie angleysing the standard way to characterize transition phenomena

6. relation[6] in nonlinear systemf20]. While the time period and ampli-
tude are used to classify temporal systems, for spatiotempo-
1 ral systems one more parameter is required to fully charac-
A= cos2f, terize the spatial behavior. We chose the boundary layer

thickness for the spatial characterization, and it is the most
As Er increases from zero all the curves are below 1 and theeasonable quantity for this purpose. The change in these
mode is ESS. At a critical Era turning point is found and three quantityi.e., the amplitude, period, and boundary layer
further increases of Er increageand thereforex such that thicknes$ is qualified in terms of soft and hard transitions,
flow-alignment emerges. The exact location of the turningwvhich corresponds to continuous and discontinuous changes
point is not exactly one because the system is spatially norin these quantities. For example, the ESS-TWS transition is
homogeneous. AR increases the nonhomogeneous effectdard in both amplitude and boundary layer, but soft in the
on the VSS decreases and thus the prediktedrves for the  period. The change in amplitude of the director dynamics is
flow-aligning branch becomes closer and closer to the clagard because ESS is a steady state and TWS a periodic state,
sical Leslie value. The major features of the ESS-VSS tranthe period is soft because at the transition the period of TWS
sition line are(1) the transition line connects two steady diverges, and in terms of boundary layer it is hard because
states of ESS and VSS aii@) at the line, the effective re- the steady ESS mode has no boundary layer behavior but the
active parameter is equal to 1. TWS mode does, since it has two wagging surface layers.
(E) Quacritical point The quacritical point must be com- The entries in the other columns can be explained in similar
patible with all of the four transition lines, since all the tran- ways.
sition lines emerge from this point, as shown in Figs. 8 and
9. Such high order transition points are well known in equi-
librium thermodynamic systemd8]. From the features of
the four transition lines, it follows that at this point, the sys-  In this paper we have simulated the in-plane shear flows
tem has an abnormal nematic state at the centerline and tloé LC materials using a theory whose asymptotic limits were
orientation field is stationary. Since the abnormal nematigreviously shown to be the Leslie-Ericksen theoR«)
state introduces a vector singularity to the system, the direcand the Doi theory with a closure approximation {&r). It
tor dynamics is undefined and it is possible to display as shown that the present theory predicts four orientation
tensor order parameter state that is fully compatible with alflow modes:(1) an elastic-driven steady staf@) a compos-
the four flow states. ite tumbling-wagging state(3) a wagging state, ant4) a
Figure 12 shows a schematic of the tensor parameter pradscous-driven steady state. The elastic-driven steady state is
files at the transitions as well as the quacritical pdéattthe  similar to the LE solution for nonaligning nemati¢44,
centej. Each schematic between the boxed text represenishere the long-range elasticity effect is dominant over the

IV. CONCLUSIONS
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entire flow geometry, and thus the orientation field is stabidevel description of the orientation field is required for fully
lized by the fixed director at the walls. The compositedescribing the nonlinear flow phenomena of LC materials.
tumbling-wagging(TWS) mode consists of a tumbling core

with two wagging surface layers. If the long-range elasticity ACKNOWLEDGMENTS
is neglected this mode becomes identical to the tumbling _ .
solutions of the Doi theory. The waggin§VS) mode is an One of us(A.D.R.) gratefully acknowledges the financial

oscillatory solution, in which the amplitude of the oscillation Support from the Natural Science and Engineering Research
decreases from a maximum at the centerline to zero at theouncil of Canada.
bounding surfaces. The WS mode becomes identical to that
predicted by Doi’'s theory if long-range elasticity is ne- APPENDIX
glected. Lastly, the present theory predicts a viscous-driven
steady stat€VSS), arising from the flow aligning behavior
that exists at relatively high Er. The VSS is spatially inho-
mogeneous and is similar to the LE solutions for flow-
aligning nematics, and the core region is similar to the stead
state predicted by Doi theory with the closure approximation. 5

The present theory smoothly fills the entire gap between Q:seq( nn— —)_ (A1)
the well-known Leslie-Ericksen and Doi theories for flowing 3
liquid crystals. The complete in-plane orientation flow phe- sing this uniaxial description faD, the present theory can
nomena of nematic liquid crystalline materials is establishe(iL)J ’

by the rheological phase diagram spanned?®nd Er, and e reduced to

When R—oo the present theory is compatible with the
Leslie-Ericksen theory. In this case, the system keeps the
scalar order parameter at the equilibrium vafii¢ Thus, the
9rder parameter tensor is written by

also De and 1/Er. Four transition lines in the parametric on 1 OF 2 1 1

plane that define the stability regions for the fol#SS, Squ=Se—q§—+Seq\N-n+,8 §+ §Seq—gseq2)
TWS, WS, VSS3 flow regimes are shown to converge at a 7 on

quacritical point which exhibits the structural characteristics X (A-n—nn-A-n), (A2)

of the four modes. The most significant feature of the

quacritical point is the presence of the steady abnormalvhereF is the Frank energysee Ref[11] for detailg. Thus,
nematic state. At the abnormal nematic state, not only the

director itself but also its dynamics are undefined. So that, an _ oF
one can regard the director dynamic at this state as station- YU T on
ary, rotational, and oscillatory, but only on the order param-

eter tensor level the abnormal nematic state is stationary. Thehere
reason why this discrepancy occurs is that the characteriza-

tion of the flow regime is based on vector level director
dynamics which can not fully describe the tensor level ori-
entation dynamics. Even if the scalar order parameter is
taken into account, vector equations are not applicable to thilote that the rotational viscosity, is proportional toS? as
abnormal nematic state. Thus, at least a second order tengareviously reported6].

+ 9y W-n+vy,(A-n—nn-A-n), (A3)

2 1 1
1=5"1,7,=p §+§sef4—gseqz)seqz.
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