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Effect of long range order on sheared liquid crystalline materials:
Flow regimes, transitions, and rheological phase diagrams

Tomohiro Tsuji and Alejandro D. Rey*
Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2

~Received 17 September 1999; revised manuscript received 18 September 2000!

A generalized theory that includes short-range elasticity, long-range elasticity, and flow effects is used to
simulate and characterize the shear flow of liquid crystalline materials as a function of the Deborah~De! and
Ericksen ~Er! numbers in the presence of fixed planar director boundary conditions; the results are also
interpreted as a function of the ratioR between short-range and long-range elasticity. The results are effectively
summarized into rheological phase diagrams spanned by De and Er, and also byR and Er, where the stability
region of four distinct flow regimes are indicated. The four regimes for planar~two-dimensional orientation!
shear flow are~1! the elastic-driven steady state,~2! the composite tumbling-wagging periodic state,~3! the
wagging periodic state, and~4! the viscous-driven steady state. The coexistence of the four regimes at a
quacritical point is shown to be due to the emergence of a defect structure. The origin, the significant steady
and dynamical features, and the transitions between these regimes are thoroughly characterized and analyzed.
Quantitative and qualitative comparisons between the present complete model predictions and those obtained
from the classical theories of nematodynamics~Leslie-Ericksen and Doi theories! are presented and the main
physical mechanisms that drive the observed deviations between the predictions of these models are identified.
The presented results fill the previously existing gap between the classical Leslie-Ericksen theory and the Doi
theory, and present a unified description of nematodynamics.

PACS number~s!: 64.70.Md, 47.50.1d, 47.54.1r
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I. INTRODUCTION

It is well known that the classical theories for flowin
liquid crystalline polymers predict that sheared nematic
uid crystalline~LC! materials have three typical flow region
with respect to the corresponding planar@two-dimensional
~2D!# orientation modes: rotational~tumbling!, oscillatory
~wagging!, and stationary~aligning! director orientations@1#;
the Doi theory@2,3# for polymeric nematic flows also pre
dicts log-rolling and kayaking out-of-plane orientatio
modes as well as above three in-plane modes@4#. All these
flow regimes correspond to ideal homogeneous orienta
fields, but in real situations liquid crystalline flows hav
bounding surfaces at which the orientation of the molecu
are strongly affected by surfaces forces and torques.
presence of different and sometimes competing orien
tendencies arising from surface and flow effects activa
long-range~Frank elasticity! forces and torques that ma
have a significant impact in the spatially nonhomogene
structural process arising during flow. This type of analy
has been performed using the vector theory of Leslie
Ericksen ~LE! @5#, that neglects short-range elasticity a
variations in the scalar order parameters. To complete
current understanding of flowing liquid crystalline materia
surfaces and long range elasticity must be included as in
LE theory but at the tensor level, thus taking into account
the bulk and surfaces effects and at the same time usi
more detailed description of liquid crystalline orientation a
order. Similar considerations apply to defects and discli
tions, but these are outside the scope of this paper. Rev
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of flow modeling of liquid crystalline materials are availab
in the literature@1,6–8#.

Previously we presented a generalized flow model for
uid crystalline materials@9#, that encompasses low molecul
weight and polymeric nematics, and takes into account lo
and short-range elasticity and flow-induced effects. The re
tive intensity of these three forces is captured by two dim
sionless numbers, the Deborah~De! number~ratio of short
range elasticity to viscous flow! and the Ericksen~Er! num-
ber ~ratio of long range elasticity to viscous flow!. It was
shown @9# that when Er→0 the model reduced to the Do
model with a closure approximation, and when De→0 the
model reduced to the Leslie-Ericksen theory~see the Appen-
dix for details!. As mentioned above, for planar~2D orienta-
tion! shear flows the classical Doi theory predicts thr
modes, and the LE theory predicts a flow aligning mode a
a nonaligning mode. Since the high shear rate steady s
predicted by the Doi theory is a flow aligning mode, it
equivalent to that predicted by the LE theory, except for
boundary layer regions. Thus any theory that encompa
the classical theories should, in the appropriate parame
limits of Er and De, predict four ideal flow modes~i.e., tum-
bling, wagging, flow aligning, and nonaligning!, and explain
the modifications of the ideal solutions for finite values of
and De. The results presented below prove that the pre
model meets these criteria.

The objective of this paper are as follows.~1! To give a
comprehensive characterization of all planar~2D! spatially
inhomogeneous orientation modes of sheared nematic liq
crystalline materials predicted by the generalized model,
values of the governing Deborah and Ericksen numbers
include low molecular weight and polymeric liquid crysta
~to facilitate the discussion in some cases we use the ratR
of short-range to long-range order as a dimensionless n
8141 ©2000 The American Physical Society
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8142 PRE 62TOMOHIRO TSUJI AND ALEJANDRO D. REY
ber instead of the Deborah number!. ~2! To characterize and
explain the driving mechanisms involved in the transitio
between the various shear flow orientation regimes, and t
dependence on the governing dimensionless number~De and
Er, or R and Er!. ~3! To quantify and explain the deviation
of the predictions of the present work from the classical
lutions obtained using the LE theory and the Doi theory w
the closure approximation.~4! To summarize the universa
features of the in-plane shear rheology in terms of rheolo
cal phase diagrams span by the Deborah number and
Ericksen number, and by the ratio of short- to long-ran
elasticity and the Ericksen number.

The organization of this paper is a follows. Section
presents the scaled governing equations, dimensionless
bers, parameters, initial and boundary conditions, and
numerical methods used to solve the governing equations
a given shear flow. Section III presents and discusses
results given in terms of tensor order parameter profiles,
rector orientation angle profiles, and rheological phase
grams. Section IV gives the main conclusions of this wo

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

The rectilinear simple shear flow geometry studied in t
paper is shown in Fig. 1, whereH is the plate separation an
V is the constant and given velocity of the moving upp
plate; the bottom plate is fixed and the upper plate move
the x direction. The shear plane is thex-y plane, andz is the
vorticity axis. To characterize all the possible planar orie
tation modes we use the following tensor order paramete

Q5E S uu2
d

3D f du25S Qxx Qxy 0

Qxy Qyy 0

0 0 QZZ

D , ~1!

where u is a unit vector along a rodlike molecule,f is a
orientation probability density function, andd is the unit ten-
sor. In terms of three eigenvalues$mn ,mm ,m l% and three
eigenvectors$n,m,l %, the orientation tensor is written as@10#

FIG. 1. Definitions of coordinate system and flow geomet
The liquid crystal sample is placed between two large flat para
plates, and is sheared by moving the upper plate with a cons
velocity V. At the bounding surfaces the tensor order parameter
constant equal to its equilibrium value, and with the director pa
lel along the flow direction. The gap separation isH.
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Q5mnnn1mmmm1m l ll . ~2!

Commonlyn is called the director, and them i ( i 5n,m,l ) are
related to the uniaxial scalar order parameterS and biaxial
order parameterP, as follows@10#:

mn5
2

3
S, mm5

1

3
~P2S!, m l52

1

3
~P1S!. ~3!

For planar orientation modes,l is always collinear with the
vorticity axis z. The evolution for the second order tensorQ
in a flowing liquid crystalline material~see Ref.@9# for de-
tails! is given by the following dimensionless nonline
coupled partial differential equations:

GQ

Gt*
5

1

DeS 2
6

~123/2Q:Q!2 H S 12
U

3 DQ

2UFQ•Q2
1

3
~Q:Q!dG1U~Q:Q!QJ D

1
1

Er S ¹2Q1
L2*

2 H ¹~¹•Q!

1@¹~¹•Q!#T2
2

3
tr@¹~¹•Q!#dJ D1

2

3
bA*

1bH A* •Q1Q•A* 2
2

3
~A* :Q!dJ

2
1

2
b$~A* :Q!Q1A* •Q•Q1Q•A* •Q1Q•Q•A*

2@~A* •Q!:Q#d%, ~4!

whereG/Gt is the corotational derivative,L2* is a dimen-
sionless Landau coefficient@11#, b is a shape factor@10,12#,
U is a dimensionless nematic potential intensity,A* is a rate
of strain tensor, and where a superposed star denotes
mensionless quantity. The original variables are nondim
sionalized using the plate separation distanceH, the upper
plate velocityV, and the Landau coefficientL1 @9# as char-
acteristic values for distance, velocity, and energy per u
length, respectively. De and Er are the Deborah and Erick
numbers defined as

De5
V

D* H
, ~5a!

Er5
hHV

L1
, ~5b!

whereD* is a rotational diffusivity coefficient, andh is a
viscosity. The first group in the right side of Eq.~4! ~i.e., the
terms multiplied by 1/De! represent the nematic short-rang
order, the second~i.e., the terms multiplied by 1/Er! the
long-range order~Frank elasticity!, and the last the viscou
flow effect. Thus, the two dimensionless numbers give
ratio of the three processes~i.e., long-range, short-range, an
viscous flow!, with De being the ratio of the viscous to shor
range elastic effect, and Er the ratio of viscous effect
long-range elastic effect. However, since both Er and
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include the shear rate (V/H), both numbers are changed b
changing the operating conditions~shear rate!. In some in-
stances it is preferable to discuss and analyze the re
using a dimensionless number independent of the shear
A convenient dimensionless number is the ratio of Er to D

R5
Er

De
5

hH2D*

L1
, ~5c!

which gives the relative magnitude of short-range to lon
range elastic effects, and also represents the ratio of the
scales for change in the eigenvalues ofQ to the time scale
for changes in the eigenvectors ofQ. Another interpretation
of R is that it is the square of the ratio of the system len
scale ~H! and the mesoscopic length scalej @j
5(L1 /D* h)1/2#. By introducingR, Eq. ~4! becomes

Er
GQ

Gt*
5RS 2

6

~123/2Q:Q!2 H S 12
U

3 DQ

2UFQ•Q2
1

3
~Q:Q!dG1U~Q:Q!QJ D

1¹2Q1
L2*

2 H ¹~¹•Q!1@¹~¹•Q!#T

2
2

3
tr@¹~¹•Q!#dJ 1ErS 2

3
bA*

1bH A* •Q1Q•A* 2
2

3
~A* :Q!dJ

2
1

2
b$~A* :Q!Q1A* •Q•Q1Q•A* •Q

1Q•Q•A* 2@~A* •Q!:Q#d% D . ~6!

The chosen values for the physical parameters u
throughout this work are as follows: shape factorb50.9
@12#, nematic potential intensityU56, Landau coefficient
L2* 51/2 ~this corresponds to the Frank elasticity coefficie
K15K353K2 , in the case of a uniaxial nematic!. Equation
~4! is solved using a fourth order Runge-Kutta method
time integration and a second order finite difference met
for the spatial discretization. Also, the computational con
tions are: Runge-Kutta time step widthDt* 51023, and spa-
tial discretization widthDy* 51022. The initial and bound-
ary conditions used throughout are

Q~ t50,0<y* <1!5Q~ t.0,y* 50!

5Q~ t.0,y* 51!

5SeqS nsns2
d

3D , ~7!

where the uniaxial order parameter at equilibriumSeq, and
directorns at the bounding surfaces are given by
lts
te.
,

-
e

h

d

s

r
d
-

Seq5
1

4
1

3

4
A12

8

3U
, ns5S 1

0
0
D . ~8!

The surface directorns is always aligned along thex direc-
tion and the surface scalar order parameters is equal to
equilibrium valueSeq, and thus prior to the imposition o
flow the system is spatially homogeneous and at the low
energy state. The boundary conditions used here can b
tered by treating the surface as viscoelastic, as done by
@13#. To facilitate the analysis and discussions of the com
tational results we use 2D plots as well as scientific visu
izations of the tensor order parameter profiles as a func
of dimensionless time. The tensor order parameter is re
sented by an ellipse, whose major~minor! axis represents
n ~m! and whose axes lengths are proportional tomn and
mm , respectively.

III. RESULTS AND DISCUSSIONS

A. Four flow regimes

After an extensive computational investigation of Eq
~4!, ~7!, and ~8!, it has been found that the present mod
predicts four distinct flow regimes as the dimensionless v
uesR and Er~or De and Er! are varied through the interva
@0, `!, in agreement with the restrictions imposed by t
classical solutions mentioned in the introduction. The fo
flow regimes within the planar orientation restriction are~a!
elastic-driven steady state~ESS!, ~b! composite tumbling-
wagging periodic state~TWS!, ~c! wagging periodic state
~WS!, ~d! viscous-driven steady state~VSS!. The existence
of four flow regimes can be qualitatively explained by co
sidering the effects of the governing dimensionless numb
R and Er. If Er is sufficiently small, the ESS steady sta
always prevails for anyR because long-range elasticit
dominates over flow effects. IfR is sufficiently small, the
eigenvalues ofQ are strongly affected by moderately stron
flows, an effect that quenches the rotational tendencies
shear, and eventually leads at sufficiently large Er to flo
alignment or VSS mode. IfR is sufficiently large the eigen
values ofQ are relatively insensitive to the flow strengt
such that increases in Er increases the rotational effect
the flow, giving rise to the emergence of the tumbling~TWS!
and wagging~WS! periodic modes, and finally at high Er t
flow-alignment~VSS!. Thus at lowerR increasing Er pro-
duces a transition between two steady states: ESS→VSS. On
the other hand at higherR, increasing Er produces the fo
lowing cascade: ESS→TWS→WS→VSS. In this section we
present, characterize, and discuss these four distinct s
flow regimes, while the transitions are considered in S
III C. In what follows we show the necessary and sufficie
results that meet the objective of this paper~see the Intro-
duction!.

~a! Elastic-driven steady state (ESS). The elastic-driven
steady state arises when the stabilizing effect of the lo
range order overcomes the rotating effects due to the vo
ity of the flow and arises for sufficiently small Er and arb
trary R. This low Er regime was discussed at length in R
@9#, and here we summarize the most important features

Figure 2 shows the director angleu at the center line
(y* 50.5) as a function of dimenstionless timet* , for R
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8144 PRE 62TOMOHIRO TSUJI AND ALEJANDRO D. REY
5100 and Er510 (De50.1). The shown figure is typica
and representative of the ESS regime. The director an
decreases monotonically to a steady state. In the absen
long range order the director would tumble according to
Doi theory with the closure approximation since for t
present case the tumbling-wagging transitions occurs at
'25 and the wagging-steady state transition occurs at
'58. However, in a spatially inhomogeneous system
long-range elasticity is able to frustrate the director perio
motion. In the ESS regime Frank elasticity dominates o
the entire flow geometry and this corresponds to a dire
profile with a nonvanishing first derivative]u/]y* 50 ~a
typical profile discussed in detail later is shown by the dot
line in Fig. 6!. Figure 3 shows the director angleu at the
center line (y* 50.5) as a function of Er, forR5250 ~solid
line! and 2500~dotted line!. The profiles exist up to Er*
5206 for R5250, and Er* 5629 for R52500, respectively,
since the ESS-TWS transition occurs at these critical*
~The transition is discussed in detail in Sec. III C!. This
means that forR5250, if Er,Er* <206, ESS is the stable
solution to Eq.~4!, and if Er.Er*5206 ESS does not exis
and TWS is the stable solution; identical statements appl

FIG. 2. Director angleu at the center line (y* 50.5) as a func-
tion of Er for R5250 ~solid line! and 2500~dotted line!. The pro-
files ~Er5206 for R5250 and Er5629 for R52500! end at the
ESS-TWS transition. The solution multiplicity is similar to th
predicted by LE theory.

FIG. 3. Director orientation angleu as a function of dimension
less timet* at the center line (y* 50.5), for Er510 andR5100.
The shown figure is typical and representative of the ESS reg
The director dynamics is overdamped.
le
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e

e
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R52500 but with Er* 5629. As Er increases from zero, th
director exhibits discontinuous jumps at Er575 for
R5250, and at Er575 and 541 forR52500. As Er de-
creases from 700 the discontinuous jumps occurs at Er529
for R5250, and at Er527 and 112 forR52500. The solu-
tion multiplicity displayed by the present model is similar
that predicted by the LE theory@14#, with the important dif-
ference that the ESS solutions exist up to a certain crit
R-dependent value of the Ericksen number Er* (R). As R
increases the range of existence of ESS increases an
R→1`, the ESS mode exist for all Er, in agreement w
the fact that the present model converges to the LE mode
R→1`.

The main features of the ESS regime are~1! the orienta-
tion field reaches a steady state,~2! the transient process t
its steady state is monotonic and nonoscillatory,~3! the
steady states arises due to the long-range elasticity,~4! under
the same conditions a homogeneous system displays
tumbling state~or wagging state if De is sufficiently large!,
~5! higher values ofR and lower values of Er promote th
appearance of this state,~6! the difference between th
present predictions and the LE solutions for tumbling nem
ics is that in the present case the steady state solutions
appear at aR dependent critical Er* , while they always exists
for the LE model, and~7! in the ESS regime there is n
orientation boundary layer behavior because there is no fl
alignment in the bulk.

~b! Composite tumbling-wagging periodic state (TWS.
The TWS time periodic regime exist at sufficiently largeR
and Er. Figure 4~a! shows a computed scientific visualizatio

e.

FIG. 4. ~a! Scientific visualization of the tensor order parame
ellipsoid profiles as a function of dimensionless timet* , ~b! direc-
tor orientation angleu as a function of dimensionless timet* at the
center (y* 50.5). The parametric conditions areR5100 and Er
52000 (De520), and is typical and representative of the TW
regime. In the two surface layers found between the bounding
faces and the abnormal state, the director oscillates in time, an
the bulk region the director rotates clockwise.
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PRE 62 8145EFFECT OF LONG RANGE ORDER ON SHEARED . . .
of the tensor order parameter ellipsoid profiles as a func
of dimensionless timet* , for R5100 and Er52000 (De
520). The shown figure is typical and representative of
TWS regime. The figure shows that in the core reg
~aroundy* '0.5! the ellipsoids rotate~tumbling mode! as
function of time and that in the two layers close to the tw
bounding surfaces~y* 50, y* 51! the ellipsoids oscillate
~wagging mode! with a space dependent amplitude; the a
plitude decreases to zero at the bounding surfaces and
creases to a maximum value at the boundary between t
tumbling and wagging regimes. The term composite in
subtitle of this section refers to the fact that two differe
~i.e., rotational and oscillatory! time dependent modes coe
ist spatially, with the tumbling layer occupying the cent
region (y* 50.5) and the two wagging layers adjacent to t
bounding surfaces (y* 50,1). The thickness of the two wag
ging layers decrease with increasing Er.

Figure 4~b! shows the director angleu at the centerline
(y* 50.5) as a function of dimensionless timet* , for
R5100 and Er52000 (De52). The shown periodic evolu
tion is typical and representative of this regime. The direc
in the bulk region rotates continuously with time, and d
plays the classical steplike time evolution@1#. As shown in
Fig. 3~a! the director near the bounding surfaces oscilla
~wagging layers!. To smoothly and continuously connect th
director periodic rotation in the bulk region with the oscill
tory motion in the two wagging layers, the ellipsoids pe
odically becomes circles@6# at the two boundaries betwee
the core tumbling region and the two wagging surface lay
When the ellipsoid becomes a circle, themn andmm eigen-
values ofQ are equal, a configuration known as the abn
mal nematic state@15#. The periodic emergence of the tw
abnormal nematic states creates a director resetting me
nism that allows the presence of a core tumbling layer in
presence of fixed boundary orientation in a sheared nem
sample without creation of persistent singularities or defe
The incompatibility of the strong anchoring condition wi
the bulk tumbling behavior was foreseen by Marrucci@16#,
using the vector type equation.

When Er→1` due to absence of long-range elastic
the TWS mode becomes identical to the tumbling mode p
dicted by the Doi theory with the closure approximation~and
b50.9!, but at finite Er the TWS mode is drastically diffe
ent for Doi’s tumbling mode at the same De values,
shown by Fig. 4~a!. The main features of the composi
tumbling-wagging state are~1! the director dynamics in the
bulk region is rotational, and oscillatory in the two surfa
layers,~2! at the two boundaries between these three reg
the abnormal nematic state emerges periodically,~3! the ten-
sor order parameterQ corresponding to the abnorma
nematic state has two equal eigenvalues (mn5mm) and the
director n is undefined. This creates a director resett
mechanism.

~c! Wagging periodic state (WS). The WS periodic regime
exists at sufficiently largeR and Er. Figure 5~a! shows a
computed scientific visualization of the tensor order para
eter profiles as a function of dimensionless timet* , for R
5100 and Er53000 (De530). The figure is typical and
representative of this regime. If Er is sufficiently large a n
wagging periodic regime emerges and replaces the tumb
core region found in this regime for lower Er numbers@see
n
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~b!#. The figure shows the periodic oscillations of the elli
soids, with an amplitude that is a maximum at the centerl
and zero at the bounding surfaces, where a fixed orienta
is imposed through the boundary conditions. Figure 5~b!
shows the director angleu at the centerline (y* 50.5) as a
function of dimensionless timet* , for R5100 and Er
53000 (De530), and represents the typical behavior in th
flow regime. The flow regime is periodic with the directo
always close to the flow direction. The scalar order para
eters changes seen att* '52 in Fig. 5~a! are due to the fact
that at this time the difference between the bulk direc
orientation and the flow direction is a maximum, as seen
Fig. 5~b! at t* '52 ~see Farhoudi and Rey@17# for details!. A
direct comparison between Figs. 4 and 5 reveals the sou
of the major differences between the TWS and WS. In
TWS the difference between the director angle in the b
region and at the boundary surfaces increases continuo
with time. On the other hand, in the WS the director osc
lates with bounded~less thanp radians! amplitude and thus
the difference between the bulk director angle and the s
face director angle is always finite, and no abnormal nem
emerges because no resetting mechanism is needed to
the bulk dynamics compatible with the fixed surface orien
tion.

The WS regime becomes identical to that predicted by
Doi theory with the closure approximation~and b50.9!
when Er→1`. For finite Er the WS is spatially inhomoge
neous while Doi’s wagging regime is homogeneous. T
main features of the WS are~1! the director dynamics ove
the entire flow geometry is periodic oscillatory, with an am
plitude that decreases from a maximum at the centerline

FIG. 5. ~a! Scientific visualization of the tensor order parame
ellipsoid profiles as a function of dimensionless timet* , ~b! direc-
tor orientation angleu as a function of dimensionless timet* at the
center (y* 50.5). The parametric conditions areR5100 and Er
53000 (De530), and is typical and representative of the WS
gime. The ellipsoids oscillates periodically, with an amplitude th
is a maximum at the centerline and zero at the boundary surfa
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8146 PRE 62TOMOHIRO TSUJI AND ALEJANDRO D. REY
zero at the bounding surfaces,~2! for a givenR the period
decreases with increasing Er.

~d! Viscous-driven steady state (VSS). At sufficiently large
Er and appropriateR ~see Sec. III B! the flow regime is
steady. The steady state is driven by the viscous flow an
different to the ESS in many significant aspects.

Figure 6 shows the director orientation angleu at the cen-
terline (y* 50.5) as a function of dimensionless timet* , for
R5100 and Er510000 (De5100). The shown figure is
typical and characteristic of this regime. The evolution in t
VSS regime is underdamped in contrast to being ov
damped in the ESS regimes. To highlight the significant d
ferences between these two steady state regimes~ESS and
VSS!, Fig. 7 shows the steady state director profilesu(y* )
for ESS ~solid line, R5100, Er510, and De50.1! and for
VSS ~dotted line,R5100, Er510000, and De50.1!. The
director profile for ESS is parabolic, and for VSS displa
the classical boundary layer behavior, with rapid chan
near the bounding surfaces and a flat profile in the core.
shape of the profiles is dictated by the nature of the stab
ing mechanism that promotes the steady state. For ESS
steady states arises due to the long range elasticity effect

FIG. 6. Director orientation angleu as a function of dimension
less timet* at the center (y* 50.5), for Er510000 andR5100.
The shown figure is typical and representative of the VSS regi
The director dynamics is underdamped.

FIG. 7. Steady state director profilesu(y* ) for ESS~solid line,
R5100, Er510, and De50.1! and for VSS~dotted line,R5100,
Er510000, and De50.1!. The director profile for ESS is parabolic
and for VSS displays boundary layer behavior with rapid chan
near the bounding surfaces and a flat profile in the core.
is

e
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e
-

the
at

is activated in spatially inhomogeneous director fields.
the other hand, VSS is driven by the viscous flow orienti
effect and is independent of the long range elasticity. T
flow aligning angle typical of the VSS regime and known
the Leslie angle in the LE theory is for this case appro
mately24°.

In the context of the classical theories the director pro
in the ESS regime is similar to that predicted by the L
theory for non-aligning nematics, while the director profile
the VSS regime is similar to that predicted by the LE theo
for aligning nematics~note that the classical uniaxial LE
theory predicts positive flow-aligning angles!. As Er→1`
due to the absence of long range elasticity the VSS regim
identical to that predicted by Doi theory with the closu
approximation~andb50.9!. Introducing long-range elastic
ity introduces deviations from Doi theory, with the orient
tion boundary layers being the most important. The m
features of the VSS regime are~1! the steady director profile
displays a typical boundary layer behavior, where the bulk
dominated by the flow-orienting torque that align the direc
close to the flow direction,~2! the transients are under
damped,~3! the driving force to achieve steady state is t
viscous flow, and is completely different from the ES
which is driven by long-range elastic torques.

B. Rheological phase diagram

The rheological phase diagram is a two-dimensional p
that displays all the stable flow regimes as a function of
governing dimensionless numbersR and Er~or De and Er!.
In this study we have performed a comprehensive solu
characterization in the two parameter planes, and be
show results using the following symbols to denote the sta
solutions to Eqs.~4!, ~7!, and ~8! for the given values ofR
and Er~or De and Er!: squares for ESS, diamonds for VS
triangles for WS, and open circles for TWS. Due to the co
plexity of the nonlinear system of coupled partial different
equations no method to compute the exact boundary betw
the different flow regimes was found, but the large numb
of computed solutions gives a sufficiently accurate locat
of the transition lines in the parametric plane.

Figure 8 shows the rheological phase diagram contain
the stable regions of the four ESS, TWS, WS, and VSS fl
regimes as a function ofR and Er. The closed circle denote
a quacritical point from which the four transition lines~i.e.,
line separating two regimes! emanate. Since as mentione
above no lines were computed, they are not explicitly sho
but are clearly apparent in the figure. The location of t
quacritical point is (R,Er)'(3.8,60), and at this point the
four flow regimes coexist~see discussion in Sec. III C!. For
R.3.8 the system displays the four flow regimes as Er
creases. However forR,3.8 only steady states~ESS and
VSS! are found. The TWS and WS regions shrink as t
quacritical point is approached and are extinguished at
point. The reason why the TWS and WS region disappea
R and Er decrease towards the quacritical point is that b
numbers scale with the inverse of the long-range elasti
which tends to damp any periodic behavior. The ESS reg
spreads to higher Er asR increases. For highR the scalar
order parameter@S, see Eq.~3!# remains relatively unaffected
by the flow and close to its equilibrium value, and a re

e.
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tively higher Er is needed to activate the rotational dynam
of the tumbling state though the emergence of the abnor
nematic state. At sufficiently lowR, and sufficiently high Er
the decrease of the scalar order parameter produces the e
gence of the VSS, known as the flow aligning regime in
LE theory@5#. As mentioned above the mechanism that p
duces the emergence of VSS through a decrease ofS and an
increase of the reactive order parameter@6# to a value greater
than 1 is explained in Ref.@17#. The reason why the VSS
region widens with increasingR and Er is that asR increases
higher flow strength~higher Er! is required to produce the
scalar order parameter changes that produce the flow a
ing regime. In terms of the classical theories, the LE limit
approached whenR→1` where the only solution is ESS
and the Doi limit is approached when Er→1`, where TS,
WS, and VSS are the stable solutions.

Figure 9 shows the rheological phase diagram in term
De and 1/Er; the symbol notation corresponds to that of F
8. The quacritical point is located at De, Er5(15.8,60). It is
useful to note that the vertical axis represent the predicti

FIG. 8. Rheological phase diagram as a function ofR and Er.
The figure shows the stable regions of the four ESS~h!, TWS ~s!,
WS ~n!, and VSS~L! flow regimes.~d! denotes a quacritica
point from which the four transition lines~i.e., line separating two
regimes! emanate.

FIG. 9. Rheological phase diagram as a function of De and 1
The figure contains the stable regions of the four ESS~h!, TWS
~s!, WS ~n!, and VSS~L! flow regimes, and a quacritical poin
~d!. See text.
s
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of the Doi model with the closure approximation~and b
50.9!, while the horizontal axis represent the predictions
the LE model for a nonaligning nematic@17#. In Sec. I we
showed that the present model converges to the Doi mo
when Er→0 ~spatially homogeneous system!, where no ESS
exists, and the tumbling-wagging and wagging-aligning tra
sitions occurs at De'25 and 58, respectively, in agreeme
with Fig. 8. For De→0, the system has no periodic states,
agreement with the well-known LE solutions. Increasi
1/Er the periodic TWS and WS regions become smaller
finally disappear at 1/Er>0.016. In Fig. 8 the strength of th
long-range order increases with increasing 1/Er, so that
right-hand side of Fig. 9 corresponds to the lower left side
Fig. 8.

C. Flow regimes transitions

In this section we characterize and discuss the transit
between the four flow regimes, especially the ESS-TW
transition, and the quacritical point. As shown in the rhe
logical phase diagrams~Figs. 8 and 9!, there are four kinds
of transition lines in the parametric plane corresponding
~a! ESS-TWS,~b! TWS-WS,~c! WS-VSS, and~d! ESS-VSS
transitions. As mentioned above, while we could not find
exact location of transition lines due to lack of a numeric
technique, they do converge at a point~here denoted the
quacritical point as in equilibrium phase transitions@18#!, as
unambiguously shown in Figs. 8 and 9.

The bifurcation analysis of a similar model as used here
a homogeneous system has been performed by Farhoud
Rey @17#. They have established the mechanism of transit
between tumbling and wagging modes and the bifurcat
involved in the transition between the wagging and align
orientation modes. It is shown@17# that the tumbling orbit
splits into two limit cycles at the TWS-WS transition poin
and then at higher De a Hopf bifurcation sets in at WS-V
transition point. To analyze the transitions in the pres
model we use the following fact: since the main features
the system depend on the bulk region behavior where
long range elasticity has comparatively less effect than cl
to the surfaces, using the results of Ref.@17# to analyze mode
transitions in the inhomogeneous system studied here is
propriate and accurate, unless the transition includes the
mode. The four transitions and the qua-critical point are a
lyzed in what follows.

~a! ESS-TWS transition. The time period of the orientation
dynamics of the TWS mode diverges at the transition po
In Ref. @9# we characterized the director rotation time peri
in the TWS regime, and established the divergence of
time period at this transition line. The orientation phenome
at the ESS-TWS transition is deduced from the behaviors
Q in both the ESS and TWS mode in the immediate vicin
of the transition. Figure 10~a! shows the director angleu at
the center line (y* 50.5) as a function of dimensionless tim
t* , for R5100 and Er585 (De50.85), for the TWS mode
very close to the ESS-TWS transition line. The angle pro
shows a novel director rotation behavior where the direc
has a two-step-like change in a single period. The co
sponding computed scientific visualization of the tensor
der parameter profiles as a function of dimensionless tim
shown in Fig. 10~b!. From these figures it can be seen th

r.
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the director rotation behavior is strongly related to the
pearance of the abnormal nematic state. For example,
short step att* '61.2 in Fig. 10~a! reflects the emergence o
the two abnormal states close to the bounding surface
Fig. 10~b!. In the usual tumbling case, the director’s angu
velocity accelerates when the director is perpendicular to
flow direction, and decelerates when the director is close
the flow direction. However, near the ESS-TWS transit
the angular velocity decelerates and accelerates just be
and after the appearance of the abnormal nematic state
the ESS side of the transition, the orientation field requi
infinite time to reach steady state and the steady state pr
includes two states which are almost abnormal nem
states. On the TWS side near the transition the abnor
nematic states appear before the system reaches the s
state. Before the appearance of the abnormal nematic s
the viscous flow effect is almost balanced by the long-ra
elastic contribution, and thus the torque on the director
comes low. The appearance of the abnormal nematic cha
the spatial arrangement of the director rotation from clo

FIG. 10. ~a! Director angleu at the centerline (y* 50.5) as a
function of dimensionless timet* , ~b! scientific visualization of the
tensor order parameter ellipsoid profiles as a function of dimens
less timet* , for R5100 and Er585 (De50.85). The figures show
the TWS mode very close to the ESS-TWS transition line;u(y*
50.5,t* ) shows a novel director rotation behavior where the dir
tor has a two-step-like change in a single period. The small ste
strongly correlated to the emergence of the abnormal nematic s
-
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wise to counterclockwise, so that the sign of the long-ran
elasticity contribution also changes from positive to neg
tive, explaining why in the TWS mode rotation prevails
the bulk of the sample. The short step in the center l
director evolution fades away when moving away from t
transition line~i.e., changing Er and De!, since the elastic
and viscous effects become far from being balanced. As
decrease the abnormal nematic states in the TW mode m
towards the center line~Ref. @9# for details!. Thus at the
ESS-TWS transition the abnormal states also move towa
the center line as Er decreases, and at the quacritical p
they merge into one.

The main features of the ESS-TWS transition line are~1!
the transition line connects the steady state of ESS and
periodic state of TWS,~2! there are two abnormal nemat
points whose position move towards the centerline (y*
50.5) as the quacritical point is approached,~3! the time
period for director rotations diverges at this transition lin
~4! the line separates regions of two different director beh
iors @i.e., winding up of the director spatial profile~ESS! and
director time rotation~TWS!#.

~b! TWS-WS transition. As mentioned above, the
TWS-WS transition is similar to that in the spatially hom
geneous systems predicted by Doi theory with the clos
approximation. The transition between tumbling and wa
ging states in a spatially homogeneous system is effe
through the emergence of the abnormal nematic state@17#.
Close to the tumbling-wagging transition the scalar ord
parameter becomes remarkably small, and at the exact
sition point the abnormal nematic state emerges tempor
@17#. The periodic emergence of the abnormal nematic s
is due to the viscous flow effect, since there is no long ran
elasticity effect in spatially homogeneous systems. At
TWS-WS transition line of the spatially inhomogeneous s
tem, this abnormal nematic state temporally appears in
entire bulk region. While the bulk region experiences t
transition from tumbling to wagging state, there is no ma
change in the boundary layer region, in which the syst
shows the wagging behavior in both TWS and WS regim
It should be mentioned that this transition line separates
periodic flow regimes, and hence the transition also appe
as periodic. The main features of the TWS-WS transit
line are ~1! the transition line separates the periodic TW
mode and the periodic WS mode,~2! the abnormal nematic
state which is driven by the viscous flow effect tempora
fills the bulk region, while no major change appears in t
two boundary layer regions,~3! the bulk core region contain
ing the periodically emerging abnormal nematic state shri
as the quacritical point is approached on the De-Er~or R-Er!
parametric plane,~4! this is the only transition at which the
system shows periodic behavior.

~c! WS-VSS transition. The WS-VSS transition also ha
the same nature as the wagging-aligning transition in
spatially homogeneous system@17#. The amplitude of the
wagging oscillation becomes zero at this transition line.
other words, the zero limit of the wagging oscillation amp
tude is the flow aligning state. Both the bulk and bounda
layer regions experience the transition from the oscillatory
the stationary state. The main features of the WS-VSS tr
sition are~1! the transition line separates the periodic W
mode from the steady VSS mode,~2! the bulk core region
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shrinks and the time period diverges as the quacritical p
is approached on the De-Er~or R-Er! parametric plane.

~d! ESS-VSS transition. The ESS-VSS transition line, cor
responds to a smooth continuous transition between two
ferent steady state modes. Since the transition is continu
both modes are equivalent and identical at the transition l
As discussed in Sec. III A the major difference between E
and VSS is in the mechanism to achieve a steady state
VSS, there is a bulk region where the viscous flow effec
dominant and the flow-aligning dynamics of the Doi theo
is retained, and two orientation boundary layers arise to
low for the continuous changes between the flow-align
director angle and the fixed director surface orientation.
the other hand, in the ESS mode there is no boundary la
behavior because flow alignment does not exist in this mo
To characterize this transition more clearly, we use the re
tive parameterl, which present the ratio of the strain t
vorticity effects on the director@6#. For the present mode
the parameterl written in terms of the scalar order param
etersS andP is given by

l5

bS 412S12P2S22
1

3
P2D

6S22P
, ~9!

where, forl,1 the homogeneous system adopts a nonal
ing flow mode, and forl>1 the homogeneous syste
adopts the flow-aligning mode@19#. In the present spatially
nonhomogeneous modell5l(R,Er,y* ) and since orienta-
tion and order are coupled, it is found thatl is a function of
the director angleu.

Figure 11~a! shows the centerline director orientatio
u(y* 50.5) as a function of Er, forR53 ~solid line!, 1 ~dot-
ted line!, and 0.1~dashed line!. The director orientation dis
plays a single undershoot followed by a monotonic incre
and finally saturation to values closer to zero asR increases.
The minimum is an increasing function ofR, and thus higher
R produces deeper wells, allowing the director to sam
larger negative angles. At aR-dependent critical value Er* ,
the director at the centerline achieves a minimum, signa
an exchange in flow mechanisms. At Er,Er* , increasing Er
produces stronger deviations from the flow direction, den
ing the increasing effects of vorticity with increasing Er. O
the other hand when Er.Er* , as Er increases the directo
aligns progressively close to the flow direction, denoting
increasing aligning tendency due to strain. Thus we h
shown that the left side of the well corresponds to ESS
the right side to VSS. Next we show that the analysis
indeed corroborated by the corresponding behavior of
reactive parameterl at the centerline (y* 50.5) as a function
of Er for the chosenR values. Figure 11~b! shows the reac-
tive parameterl at the center line (y* 50.5) the as a func-
tion of the Ericksen number Er, forR values corresponding
to the previous figure. The figure shows that the reac
parameter exhibits overshoot behavior followed by a mo
tonic decrease and final saturation to values increasin
greater than one for increasingR. The peaks of the overshoo
increase with increasingR and occur at smaller Er values
The l overshoots are directly correlated to the undersho
of u, shown above. Thus very close to Er* whereu at the
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center line attains its minimum the reactive parameter atta
its maximum which is greater than 1, thus explaining t
ESS-VSS transition, simply as a change of behavior a
critical Er5Er* . For spatially nonhomogeneous system, t
reactive parameterl is a function of position and thus th
aligning-nonaligning transition condition for spatially hom
geneous systems,l51, is not exactly obeyed. Figure 11~c!
shown the reactive parameterl at the center line (y* 50.5)
as a function of the director center line angleu(y* 50.5), for
R53 ~solid line!, 1 ~dotted line!, 0.1 ~dashed line!, and for
the spatially homogeneous flow-aligning state~double dotted

FIG. 11. ~a! Director angleu at the centerline (y* 50.5) and~b!
reactive parameterl at the center line (y* 50.5) as a function of
Er, for R53 ~solid line!, 1 ~dotted line!, and 0.1~dashed line!, ~c!
reactive parameter at the center line (y* 50.5) as a function ofu at
the center line (y* 50.5), forR53 ~solid line!, 1 ~dotted line!, 0.1
~dashed line!, and for the spatially homogeneous case~double dot-
ted line!, respectively. For the spatially homogeneous casel
51/cos 2u.
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line!. The lines are obtained by increasing Er from ze
increasing Er from zero corresponds to left motion along
curves towards the turning point and subsequently to
right. The thin solid line represents the criticall51 transi-
tion value for homogeneous systems. The spatially homo
neous flow-aligning state profile is given by the Leslie an
uL relation @6#

l5
1

cos 2uL
.

As Er increases from zero all the curves are below 1 and
mode is ESS. At a critical Er* a turning point is found and
further increases of Er increaseu and thereforel such that
flow-alignment emerges. The exact location of the turn
point is not exactly one because the system is spatially n
homogeneous. AsR increases the nonhomogeneous effe
on the VSS decreases and thus the predictedl curves for the
flow-aligning branch becomes closer and closer to the c
sical Leslie value. The major features of the ESS-VSS tr
sition line are ~1! the transition line connects two stead
states of ESS and VSS and~2! at the line, the effective re
active parameter is equal to 1.

~E! Quacritical point. The quacritical point must be com
patible with all of the four transition lines, since all the tra
sition lines emerge from this point, as shown in Figs. 8 a
9. Such high order transition points are well known in eq
librium thermodynamic systems@18#. From the features o
the four transition lines, it follows that at this point, the sy
tem has an abnormal nematic state at the centerline and
orientation field is stationary. Since the abnormal nema
state introduces a vector singularity to the system, the di
tor dynamics is undefined and it is possible to display
tensor order parameter state that is fully compatible with
the four flow states.

Figure 12 shows a schematic of the tensor parameter
files at the transitions as well as the quacritical point~at the
center!. Each schematic between the boxed text repres

FIG. 12. Schematic of the tensor parameter profiles at four t
sitions ~ESS-TWS, TWS-WS, WS-VSS, and VSS-ESS! as well as
at the quacritical point~at the center!. The ellipsoids show the ten
sor order parameter states and the role of the abnormal nem
states at the transitions and at the quacritical point. See text.
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the tensor ellipsoid profiles between the two indicated fl
regimes. Recall that a circle denotes the abnormal nem
states. For example the transition between the TWS and
is effected through the periodic emergence of an abnor
nematic bulk layer. The other remaining schematics foll
directly from the previous discussions. At the center of t
figure the schematic of the tensor order parameter at
quacritical state is shown to be fully compatible with th
space and time dependent structural characteristics of
tensor order parameter profiles at all the four flow tran
tions. Thus the figure provides a synthesis and a consis
unified vision of spatially nonhomogeneous planar nema
rheology in the presence of short- and long-range elastic

Finally, the four transition states are classified in Table
using the standard way to characterize transition phenom
in nonlinear systems@20#. While the time period and ampli
tude are used to classify temporal systems, for spatiotem
ral systems one more parameter is required to fully cha
terize the spatial behavior. We chose the boundary la
thickness for the spatial characterization, and it is the m
reasonable quantity for this purpose. The change in th
three quantity~i.e., the amplitude, period, and boundary lay
thickness! is qualified in terms of soft and hard transition
which corresponds to continuous and discontinuous chan
in these quantities. For example, the ESS-TWS transitio
hard in both amplitude and boundary layer, but soft in t
period. The change in amplitude of the director dynamics
hard because ESS is a steady state and TWS a periodic
the period is soft because at the transition the period of T
diverges, and in terms of boundary layer it is hard beca
the steady ESS mode has no boundary layer behavior bu
TWS mode does, since it has two wagging surface lay
The entries in the other columns can be explained in sim
ways.

IV. CONCLUSIONS

In this paper we have simulated the in-plane shear flo
of LC materials using a theory whose asymptotic limits we
previously shown to be the Leslie-Ericksen theory (R→`)
and the Doi theory with a closure approximation (Er→`). It
is shown that the present theory predicts four orientat
flow modes:~1! an elastic-driven steady state,~2! a compos-
ite tumbling-wagging state,~3! a wagging state, and~4! a
viscous-driven steady state. The elastic-driven steady sta
similar to the LE solution for nonaligning nematics@14#,
where the long-range elasticity effect is dominant over

n-

tic

TABLE I. Characterization of flow-mode transitions. ES
elastic-driven steady state, TWS: tumbling-wagging compo
state, WS: wagging state, and VSS: viscous-driven steady s
Hard: discontinuous change; Soft: continuous change.

ESS-TWS TWS-WS WS-VSS ESS-VSS

Amplitude of
director dynamics

Hard Hard Soft Soft

Time period of
director dynamics

Soft Soft Hard Soft

Boundary layer
thickness

Hard Soft Soft Soft
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entire flow geometry, and thus the orientation field is sta
lized by the fixed director at the walls. The compos
tumbling-wagging~TWS! mode consists of a tumbling cor
with two wagging surface layers. If the long-range elastic
is neglected this mode becomes identical to the tumb
solutions of the Doi theory. The wagging~WS! mode is an
oscillatory solution, in which the amplitude of the oscillatio
decreases from a maximum at the centerline to zero at
bounding surfaces. The WS mode becomes identical to
predicted by Doi’s theory if long-range elasticity is n
glected. Lastly, the present theory predicts a viscous-dri
steady state~VSS!, arising from the flow aligning behavio
that exists at relatively high Er. The VSS is spatially inh
mogeneous and is similar to the LE solutions for flo
aligning nematics, and the core region is similar to the ste
state predicted by Doi theory with the closure approximati

The present theory smoothly fills the entire gap betwe
the well-known Leslie-Ericksen and Doi theories for flowin
liquid crystals. The complete in-plane orientation flow ph
nomena of nematic liquid crystalline materials is establish
by the rheological phase diagram spanned byR and Er, and
also De and 1/Er. Four transition lines in the parame
plane that define the stability regions for the four~ESS,
TWS, WS, VSS! flow regimes are shown to converge at
quacritical point which exhibits the structural characterist
of the four modes. The most significant feature of t
quacritical point is the presence of the steady abnor
nematic state. At the abnormal nematic state, not only
director itself but also its dynamics are undefined. So th
one can regard the director dynamic at this state as sta
ary, rotational, and oscillatory, but only on the order para
eter tensor level the abnormal nematic state is stationary.
reason why this discrepancy occurs is that the characte
tion of the flow regime is based on vector level direc
dynamics which can not fully describe the tensor level o
entation dynamics. Even if the scalar order paramete
taken into account, vector equations are not applicable to
abnormal nematic state. Thus, at least a second order te
s
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level description of the orientation field is required for ful
describing the nonlinear flow phenomena of LC materials
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APPENDIX

When R→` the present theory is compatible with th
Leslie-Ericksen theory. In this case, the system keeps
scalar order parameter at the equilibrium valueSeq. Thus, the
order parameter tensor is written by

Q5SeqS nn2
d

3D . ~A1!

Using this uniaxial description forQ, the present theory can
be reduced to

Seq
]n

]t
5

1

Seqh

dF

dn
1SeqW•n1bS 2

3
1

1

3
Seq2

1

6
Seq2D

3~A•n2nn•A•n!, ~A2!

whereF is the Frank energy~see Ref.@11# for details!. Thus,

g1

]n

]t
5

dF

dn
1g1W•n1g2~A•n2nn•A•n!, ~A3!

where

g15Seq2
h,g25bS 2

3
1

1

3
Seq2

1

6
Seq2DSeq2

.

Note that the rotational viscosityg1 is proportional toS2 as
previously reported@6#.
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